Level 2 Help for MARSFILTER

INP

Input files contain the XYZ coordinates. If three filenames are given,
they all should be single band files each containing X, Y and Z values
in that order.  If only one filename is given, it should be a 3-band
file with bands in (X,Y,Z) order.

The input files are in REAL (float) format.

If -NO_XYZ is given, then the input need not be an XYZ file, but can in
fact be any image with PIG-compatible labels (from which a camera model
can be derived).  The Volume filters are disabled, however.


OUT

Output file containing the mask.

The output file is in BYTE format, with 255 representing a point inside a
filter element, and 0 for points outside..


EXTRA_FILTER

Input XML file containing an extra filter, typically one specific to this
input file.  It is loaded in addition to the common filter of the FILTER
parameter, and the resulting masks are merged.

This is used by MSL, where the extra filter is a filter tailored to the
specific image's kinematic state by the MSLFILTER program.


FILTER

Input XML file containing the common filter description to use.

If this parameter is not specified, an attempt is made to automatically find
the file based on CONFIG_PATH.  See the main help text for a description of
the algorithm.


PARAMS

Numeric parameters for use with some filters.  For example, the optional
"rotate" element of the volume shapes can add a value from PARAMS to the
rotation angle.  Note that indexing of PARAMS starts at 1 (0 meaning no
value), so the first element of PARAMS would correspond to add_angle="1" in
the XML file.

The use of PARAMS, and the interpretation of each value, dependends on the
filter in use.  The filter file should describe which, if any, parameters are
used.


HORIZON

Override for the horizon mask elevation, in degrees.  The file must contain
a <horizon> entry or this parameter will be ignored.  The horizon mask can be
effectively disabled by providing an elevation greater than 90.


PRINT

This parameter causes all the filters to be printed to stdout (including
the results of projecting polygons to image space).  It can be useful for
debugging.  By default, this is off (which is a change as of 2012/03/22;
before printing was always on).


NUMBERS

This parameter causes the object number (derived from "id" in the xmlf file)
to be used as the mask value rather than 255.  This is intended for
debugging/setup and helps find what polygon is causing issues in a mask.
It's actually the value mod 256 to fit in a byte (so it could be either 2 or
258, for example).


USE_XYZ

If -NO_XYZ is specified, then the input file need not be an XYZ image, but
rather any image with a PIG-compatible label.  The capability to do Volume
masks is turned off in this case.  This can be useful in situations where
volume masks are not important (such as MSL) and it is desired to get a mask
for a non-stereo image.


RMC

Specifies whether or not to enable RMC checking in the filter mask file.
Checking is on by default.  If -NO_RMC is on, checking is disabled, as if
there were no rmcX attributes in the mask file.


CONFIG_PATH

A colon-separated list of directories in which to look for configuration
and calibration files.  Environment variables are allowed in the list
(and may themselves contain colon-separated lists).  The directories are
searched in order for each config/cal file when it is loaded.  This allows
multiple projects to be supported simultaneously, and allows the user to
override any given config/cal file.  Note that the directory structure below
the directories specified in this path must match what the project expects.
For example, Mars 98 expects flat fields to be in a subdirectory named
"flat_fields" while Mars Pathfinder expects them to be directly in the
directory specified by the path (i.e. no intermediate subdirectories).


POINT_METHOD

Specifies a mission-specific pointing method to use.  Normally this
parameter is not used, in which case the "default" pointing methods
are used.  Some missions may have special, or alternate, pointing
methods available, which are indicated by this string (for example,
backlash models, using arm joint angles instead of x/y/z/az/el, etc).
A substring search is used, so multiple methods (where that makes sense)
can be specified by separating the keywords with commas.

Note that nav files created using one pointing method will most likely
not be compatible with a mosaic created using a different pointing method.

The methods available vary per mission, but some methods available at
the time of this writing are:

BACKLASH : Mars 98 SSI only.  Selects a backlash pointing model,
which adjusts the telemetered azimuth and elevation values based on
knowledge of the camera's mechanical backlash and the direction the
motor was travelling when the image was taken.


NOSITE

Disables all label-derived parameters to the Site mechanism which underlies
coordinate systems.  This forces all sites to be identical, with all rotations
and offsets set the same.  In the case of MPF or Mars 98, this disables
the lander quaternion and offset (sets them to identity and 0, respectively).
This option should not be used with images taken from different vantage
points (e.g. the spacecraft moved, or mixing a lander and a rover) or
invalid results will be obtained.  The use of this option invalidates the
Fixed coordinate frame; any values reported in the Fixed frame will not
correctly reflect the orientation of the lander/rover.

Obviously, this option should be rarely used; it is intended for when the
image labels defining the site are invalid or inconsistent.


RSF

Rover State File.  This is a list of filenames to load containing
Rover State information.  These files contain position and orientation
information for a rover (or other mobile spacecraft) at various sites.
They are in XML format.  See the "Rover Motion Counter (RMC) Master File SIS"
for details on these files.

Rover State Files have a priority order.  The files listed first have
the highest priority.

Environment variables may be used in the list.

For MER, if a directory is specified, then that directory is searched for
RMC Master files and any found are loaded.  The directory structure and
filename convention is covered in the RMC SIS.  The directory specified
is the one containing "master", so if <dir> is the name specified in the
RSF parameter, the following files will be searched for:

<dir>/master/_Master.svf
<dir>/master/_Site__Master.rvf

The name of each file loaded is printed to the stdout log for reference.


DEBUG_RSF

If enabled, this causes the internal database of RMC locations to be
printed out to the stdout log.  This is after the RSF files have been
loaded and the coordinate systems read from the input label(s).


COORD

The coordinate system to use for the output UVW vectors.  The interpretation
of the values is dependent on the mission.  Some representative missions are
listed here:

Fixed - The Fixed frame.  This is the ultimate reference frame
    (see also FIXED_SITE for rover missions).
Instrument - (default) The "natural" frame for the instrument 
    (of the first input image).  MPF: Lander or Rover; M98: MVACS; MER: Rover.
Site - A major Site frame.  For rover missions, COORD_INDEX specifies which
    Site frame to use.  Non-rover missions treat this as Fixed.
Rover - An instance of the Rover frame.  For rover missions, COORD_INDEX
    specifies which instance of the rover frame to use.  Non-rover mission
    use the spacecraft frame (e.g. Lander for M98).
Local_Level - An instance of a Local Level frame.  This is typically
    coincident with the Rover frame (in XYZ) but oriented toward North
    like the Site and Fixed frames.  For MER, this is an instance of a
    Drive index move.


COORD_INDEX

The index specifies which instance of a coordinate system to use.  It is
currently applicable only to rover-based missions, but could have other
uses.  The index is equivalent to the Rover Motion Counter (RMC) for MER
and FIDO.

For MER/FIDO, there are many Site frames.  Each is numbered with a single
index.  For Site Frames, coord_index specifies which to use.  Likewise,
there are many Local_Level and Rover frames, corresponding to values of
the RMC.  The multiple instances of this frame are selected by COORD_INDEX.

Generally COORD_INDEX defaults sensibly so you don't usually need to
specify it.  It will default to the instance used by the first input.


FIXED_SITE

Specifies which major Site is the "Fixed" Site for this run.

Historically, MPF and M98 had a single "Surface Fixed" frame which never
moved, and which all other coordinate system frames were referenced to.
With the advent of long-range rovers (such as MER and FIDO), that became
insufficient.  The rover traverses far enough that errors in knowledge of
coordinate system offset and orientation become unacceptable.

For this reason, a system of major Sites was introduced.  Periodically
during the mission, a Site frame is declared.  This then becomes the
reference frame for all activities until the next Site is declared.
References are kept local, and errors don't propogate across Sites.

However, if images from more than one Site are combined together, the
Site's must be placed relative to each other.  Therefore a single reference
frame is still needed to combine different sites.

The FIXED_SITE parameter controls which of the major Site frames is
the reference ("fixed") site for this program run.  This fixed frame
can vary in different program runs, but is constant throughout one
execution.

If not specified, FIXED_SITE defaults to the minimum Site number (i.e.
lowest numbered, or earliest chronologically) used in all input images.
Normally this default is sufficient; rarely must FIXED_SITE be specified.

One or more Rover State Files must usually be specified in order to combine
image from more than one Site.  These describe the relationship between
sites.  See the RSF parameter.


SOLUTION_ID

Specifies which solution ID to use when specifying the coordinate system.

There are potentially many different definitions for the same coordinate
system.  These are identified via a unique Solution ID.  If this parameter
is given, only the specified solution's definition is searched for.  Without
it, the "best" available solution is chosen.

It is extremely rare that this parameter should be needed.  The default
will be sufficient in almost every case.

Note that the current MER implementation requires that a value for COORD_INDEX
also be provided, in order for this parameter to take effect.