Help for PHOTFIT2_VEVERKA
PURPOSE:
In this PDF, the user is asked for the only parameters and there absolute
limits needed to fit Veverka's photometric function.
If a sulution guess falls out-of-bonds then the attemp will be aborted and
a new guess attempted.
MATHEMATICAL BACKGROUND :
Exept close to zero phase, this expression is a good description of light
scattered by low-albedo bodies of the solar system, such as the Moon and
Mercury, for which only light that has been scattered once contributes
significantly to the brightnes.
bidirectional reflectance [1/str] :
r(i,e,g) = ( cos(i) / (cos(e)+cos(e)) )
* (A_VEVERKA + B_VEVERKA * phase + C_VEVERKA * exp(-DVEVERKA * phase))
usually :
C_VEVERKA=1-A_VEVERKA
REFERENCE :
Joseph Veverka, J. Goguen, S. Young, J. Elliont, Scattering of light from
particulate surfaces.
I. A laboratory assessment of multiple-scattering effects.
Icarus, Vol. 34, p. 406-414
PROGRAMMER:
Friedel Oschuetz
Institute of Planetary Exploration
DLR
12484 Berlin (FRG)
PARAMETERS:
A_VEVERKA
Veverka parameter
MIN_A_VEVERKA
Minimum of Veverka parameter
MAX_A_VEVERKA
Maximum of Veverka parameter
T_A_VEVERKA
Temperatur of Veverka parameter
B_VEVERKA
Veverka parameter
MIN_B_VEVERKA
Minimum of Veverka parameter
MAX_B_VEVERKA
Maximum of Veverka parameter
T_B_VEVERKA
Temperatur of Veverka parameter
C_VEVERKA
Veverka parameter
MIN_C_VEVERKA
Minimum of Veverka parameter
MAX_C_VEVERKA
Maximum of Veverka parameter
T_C_VEVERKA
Temperatur of Veverka parameter
D_VEVERKA
Veverka parameter
MIN_D_VEVERKA
Minimum of Veverka parameter
MAX_D_VEVERKA
Maximum of Veverka parameter
T_D_VEVERKA
Temperatur of Veverka parameter
See Examples:
Cognizant Programmer: